Find us on Google+

Science Launching to Station Looks Forward and Back

by
Science Launching to Station Looks Forward and Back

Some of the earliest human explorers used mechanical tools called sextants to navigate vast oceans and discover new lands. Today, high-tech tools navigate microscopic DNA to discover previously unidentified organisms. Scientists aboard the International Space Station soon will have both types of tools at their disposal.

image

Orbital ATK’s Cygnus spacecraft is scheduled to launch its ninth contracted cargo resupply mission to the space station no earlier than May 21. Sending crucial science, supplies and cargo to the crew of six humans living and working on the orbiting laboratory.

Our Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a lost-communications navigation backup. The Sextant Navigation investigation tests use of a hand-held sextant for emergency navigation on missions in deep space as humans begin to travel farther from Earth.

image

Jim Lovell (far left) demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. 

image

The remoteness and constrained resources of living in space require simple but effective processes and procedures to monitor the presence of microbial life, some of which might be harmful. Biomolecule Extraction and Sequencing Technology (BEST) advances the use of sequencing processes to identify microbes aboard the space station that current methods cannot detect and to assess mutations in the microbial genome that may be due to spaceflight.  

image

Genes in Space 3 performed in-flight identification of bacteria on the station for the first time. BEST takes that one step farther, identifying unknown microbial organisms using a process that sequences directly from a sample with minimal preparation, rather than with the traditional technique that requires growing a culture from the sample.

image

Adding these new processes to the proven technology opens new avenues for inflight research, such as how microorganisms on the station change or adapt to spaceflight.

The investigation’s sequencing components provide important information on the station’s microbial occupants, including which organisms are present and how they respond to the spaceflight environment – insight that could help protect humans during future space exploration. Knowledge gained from BEST could also provide new ways to monitor the presence of microbes in remote locations on Earth.

Moving on to science at a scale even smaller than a microbe, the new Cold Atom Lab (CAL) facility could help answer some big questions in modern physics.

image

CAL creates a temperature ten billion (Yup. BILLION) times colder than the vacuum of space, then uses lasers and magnetic forces to slow down atoms until they are almost motionless. CAL makes it possible to observe these ultra-cold atoms for much longer in the microgravity environment on the space station than would be possible on the ground.

image

Results of this research could potentially lead to a number of improved technologies, including sensors, quantum computers and atomic clocks used in spacecraft navigation.

A partnership between the European Space Agency (ESA) and Space Application Services (SpaceAps), The International Commercial Experiment, or ICE Cubes Service, uses a sliding framework permanently installed on the space station and “plug-and-play” Experiment Cubes.

image

The Experiment Cubes are easy to install and remove, come in different sizes and can be built with commercial off-the-shelf components, significantly reducing the cost and time to develop experiments.

ICE Cubes removes barriers that limit access to space, providing more people access to flight opportunities. Potential fields of research range from pharmaceutical development to experiments on stem cells, radiation, and microbiology, fluid sciences, and more.

For daily nerd outs, follow @ISS_Research on Twitter!

Watch the Launch + More!

image

What’s On Board Briefing

Join scientists and researchers as they discuss some of the investigations that will be delivered to the station on Saturday, May 19 at 1 p.m. EDT at nasa.gov/live. Have questions? Use #askNASA

CubeSat Facebook Live

The International Space Station is often used to deploy small satellites, a low-cost way to test technology and science techniques in space. On board this time, for deployment later this summer, are three CubeSats that will help us monitor rain and snow, study weather and detect and filter radio frequency interference (RFI). 

Join us on Facebook Live on Saturday, May 19 at 3:30 p.m. EDT on the NASA’s Wallops Flight Facility page to hear from experts and ask them your questions about these small satellites. 

Pre-Launch Briefing

Tune in live at nasa.gov/live as mission managers provide an overview and status of launch operations at 11 a.m. EDT on Sunday, May 20. Have questions? Use #askNASA

LIFTOFF!

Live launch coverage will begin on Monday, May 21 4:00 a.m. on NASA Television, nasa.gov/live, Facebook Live, Periscope, Twitch, Ustream and YouTube. Liftoff is slated for 4:39 a.m.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Source: NASA


Posted in NASA and tagged by with no comments yet.

Astronaut Journal Entry – Alarms

by
Astronaut Journal Entry – Alarms

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

The smoke detectors have been setting off alarms. This happens routinely due to dust circulating in the modules, but every alarm is taken seriously. This is the third time that the alarm has sounded while I was using the Waste & Hygiene Compartment (toilet). I am starting to think that my actions are causing the alarms…. maybe I should change my diet?

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Source: NASA


Posted in NASA and tagged by with no comments yet.

Meet Our Latest CubeSats

by
Meet Our Latest CubeSats

When the next Orbital ATK cargo mission to the International Space Station blasts off from Wallops Flight Facility in Virginia on May 20 at 5:04 a.m. EDT carrying science and supplies, the Cygnus spacecraft will also be carrying a few of our latest CubeSats.

image

The International Space Station is often used to deploy small satellites, a low-cost way to test technology and science techniques in space.

image

On board this time, for deployment later this summer, are…

The ‘Rabbit’ in the RainCube

As its name suggests, RainCube will use radar to measure rain and snowfall. CubeSats are measured in increments of 1U (A CubeSat unit, or 1U, is roughly equivalent to a 4-inch box, or 10x10x10 centimeters). The RainCube antenna has to be small enough to be crammed into a 1.5U container; the entire satellite is about as big as a cereal box.

“It’s like pulling a rabbit out of a hat,” said Nacer Chahat, a specialist in antenna design at our Jet Propulsion Laboratory. “Shrinking the size of the radar is a challenge for us. As space engineers, we usually have lots of volume, so building antennas packed into a small volume isn’t something we’re trained to do.”

image

That small antenna will deploy in space, like an upside-down umbrella. To maintain its small size, the antenna relies on the high-frequency Ka-band wavelength – good for profiling rain and snow. Ka-band also allows for an exponential increase in sending data over long distances, making it the perfect tool for telecommunications.

Peering Into Clouds

image

TEMPEST-D will also study weather. Temporal Experiment for Storms and Tropical Systems – Demonstration (TEMPEST-D) has satellite technology with the potential to measure cloud and precipitation processes on a global basis. These measurements help improve understanding of Earth’s water cycle and weather predictions, particularly conditions inside storms.

image

TEMPEST-D millimeter-wave observations have the ability to penetrate into clouds to where precipitation initiation occurs. By measuring the evolution of clouds from the moment of the onset of precipitation, a future TEMPEST constellation mission could improve weather forecasting and improve our understanding of cloud processes, essential to understanding climate change.

Cutting Through the Noise

image

CubeRRT, also the size of a cereal box, will space test a small component designed to detect and filter radio frequency interference (RFI). RFI is everywhere, from cellphones, radio and TV transmissions, satellite broadcasts and other sources. You probably recognize it as that annoying static when you can’t seem to get your favorite radio station to come in clearly because another station is nearby on the dial.

image

The same interference that causes radio static also affects the quality of data that instruments like microwave radiometers collect. As the number of RFI-causing devices increases globally, our satellite instruments – specifically, microwave radiometers that gather data on soil moisture, meteorology, climate and more – will be more challenged in collecting high-quality data.

That’s where CubeSat Radiometer Radio frequency interference Technology (CubeRRT) comes in. The small satellite will be carrying a new technology to detect and filter any RFI the satellite encounters in real-time from space. This will reduce the amount of data that needs to be transmitted back to Earth – increasing the quality of important weather and climate measurements.

Searching the Halo of the Milky Way

image

Did you know that we’re still looking for half of the normal matter that makes up the universe? Scientists have taken a census of all the stars, galaxies and clusters of galaxies — and we’re coming up short, based on what we know about the early days of the cosmos.

That missing matter might be hiding in tendrils of hot gas between galaxies. Or it might be in the halos of hot gas around individual galaxies like our own Milky Way. But if it’s there, why haven’t we seen it? It could be that it’s so hot that it glows in a spectrum of X-rays we haven’t looked at before.

image

Image Credit: Blue Canyon Technologies

Enter HaloSat. Led by the University of Iowa, HaloSat will search the halo of the Milky Way for the emissions oxygen gives off at these very high temperatures. Most other X-ray satellites look at narrow patches of the sky and at individual sources. HaloSat will look at large swaths of the sky at a time, which will help us figure out the geometry of the halo — whether it surrounds the galaxy more like a fried egg or a sphere. Knowing the halo’s shape will in turn help us figure out the mass, which may help us discover if the universe’s missing matter is in galactic halos.

CubeSats for All

Small satellites benefit Earth and its people (us!) in multiple ways. From Earth imaging satellites that help meteorologists to predict storm strengths and direction, to satellites that focus on technology demonstrations to help determine what materials function best in a microgravity environment, the science enabled by CubeSats is diverse. 

image

They are also a pathway to space science for students. Our CubeSat Launch initiative (CSLI) provides access to space for small satellites developed by our Centers and programs, educational institutions and nonprofit organizations. Since the program began, more than 50 educational CubeSats have flown. In 2016, students built the first CubeSat deployed into space by an elementary school.

Learn more about CubeSats HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Source: NASA


Posted in NASA and tagged by with no comments yet.