Find us on Google+

Using the Power of Space to Fight Cancer

From cancer research to DNA sequencing, the International Space Space is proving to be an ideal platform for medical research. But new techniques in fighting cancer are not confined to research on the space station. Increasingly, artificial intelligence is helping to “read” large datasets. And for the past 15 years, these big data techniques pioneered by our Jet Propulsion Laboratory have been
revolutionizing biomedical research.

Microgravity Research on Space Station

On Earth, scientists have devised several laboratory methods to mimic normal
cellular behavior, but none of them work exactly the way the body does. Beginning more than 40 years ago aboard Skylab and continuing today aboard the space station, we and our partners have conducted research in the microgravity of space.  In this environment, in vitro cells arrange themselves into three-dimensional
groupings, or aggregates. These aggregates more closely resemble what actually occurs in the human body. Cells in microgravity also tend to clump together more
easily, and they experience reduced fluid shear stress – a type of
turbulence that can affect their behavior. The development of 3D structure and enhanced cell differentiation seen in microgravity may help scientists study cell behavior and cancer development in models that behave more like tissues in the human body.

image

In addition, using the distinctive microgravity environment
aboard the station, researchers are making further advancements in cancer
therapy. The process of microencapsulation was investigated aboard the space
station in an effort to improve the Earth-based technology. Microencapsulation
is a technique that creates tiny, liquid-filled, biodegradable micro-balloons
that can serve as delivery systems for various compounds, including specific
combinations of concentrated anti-tumor drugs. For decades, scientists and
clinicians have looked for the best ways to deliver these micro-balloons, or
microcapsules, directly to specific treatment sites within a cancer patient, a
process that has the potential to revolutionize cancer treatment.

image

A team of scientists at Johnson Space Center used the station as
a tool to advance an Earth-based microencapsulation system, known as the
Microencapsulation Electrostatic Processing System-II (MEPS-II), as a way to
make more effective microcapsules. The team leveraged fluid behavior in
microgravity to develop a new technique for making these microcapsules that
would be more effective on Earth. In space, microgravity brought together two
liquids incapable of mixing on Earth (80 percent water and 20 percent oil) in
such a way that spontaneously caused liquid-filled microcapsules to form as
spherical, tiny, liquid-filled bubbles surrounded by a thin, semipermeable,
outer membrane. After studying these microcapsules on Earth, the team was able
to develop a system to make more of the space-like microcapsules on Earth and
are now performing activities leading to FDA approval for use in cancer
treatment.  

image

In addition, the ISS National Laboratory managed by the Center for the Advancement of Science in Space (CASIS) has also sponsored cancer-related investigations.  An example of that is an investigation conducted by the commercial company Eli Lilly that seeks to crystallize a human membrane protein involved in several types of cancer together with a compound that could serve as a drug to treat those cancers. 

“So many things change in 3-D, it’s mind-blowing – when you look at the
function of the cell, how they present their proteins, how they
activate genes, how they interact with other cells,” said Jeanne Becker,
Ph.D., a cell biologist at Nano3D Biosciences in Houston and principal
investigator for a study called

Cellular Biotechnology Operations Support Systems: Evaluation of Ovarian Tumor Cell Growth and Gene Expression, also known as the CBOSS-1-Ovarian
study
. “The variable that you are most looking at here is gravity, and
you can’t really take away gravity on Earth. You have to go where
gravity is reduced." 

Crunching Big Data Using Space Knowledge

image

Our Jet Propulsion Laboratory often deals
with measurements from a variety of sensors – say, cameras and mass
spectrometers that are on our spacecraft. Both can be used to study a star, planet or similar
target object. But it takes special software to recognize that readings
from very different instruments relate to one another.

There’s a similar problem in cancer research, where readings from
different biomedical tests or instruments require correlation with one
another. For that to happen, data have to be standardized, and
algorithms must be “taught” to know what they’re looking for.

Because space exploration and cancer research share a similar challenge in that they both must analyze large datasets to find meaning, JPL and the National Cancer Institute renewed their research partnership to continue developing methods in data science that originated
in space exploration and are now supporting new cancer discoveries.

JPL’s methods are leading to the development of a single,
searchable network of cancer data that researcher can work
into techniques for the early diagnosis of cancer or cancer risk. In the time they’ve worked together, the two organizations’ efforts have led
to the discovery of six new Food and Drug Administration-approved cancer
biomarkers. These
agency-approved biomarkers have been used in more than 1 million patient
diagnostic tests worldwide.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Source: You’ll find lots of information about the planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Also we have facts about the space station, ISS, SpaceX launch, space program, and outerspace. NASA

by
Using the Power of Space to Fight Cancer

Posted in NASA and tagged by with no comments yet.

Leave a Reply

Your email address will not be published. Required fields are marked *